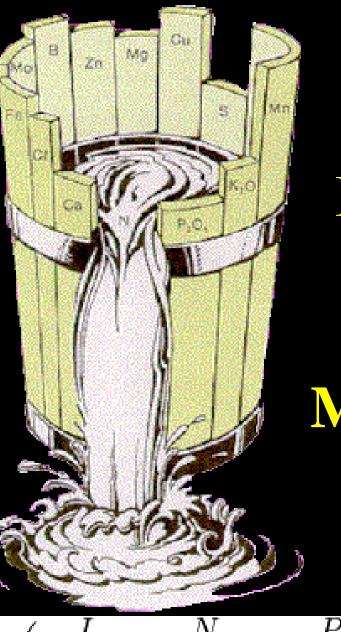

Plant Nutrition And Water Quality

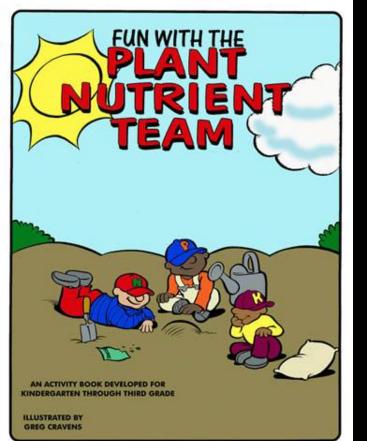


Dr. Steve Millett

Justus von Liebig (1803-1873) German Chemist Father of Fertilizers

Liebig's Law of the Minimum

dOmin $\overline{+I}, \overline{k_N+N}, \overline{k_P+P}$ dt

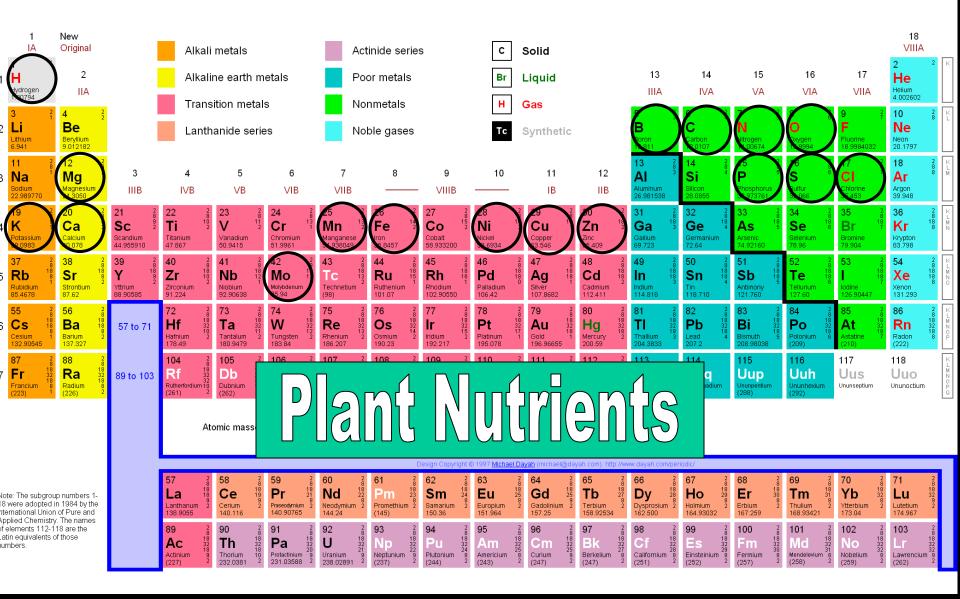


Elements in Plant Nutrition

Essential Elements

- Fresh plant material is 80 to 95% water
- 16-17 essential elements
- Plants cannot complete life cycle without them
- Action must be specific no other element can take its place
- Element must be directly involved (structure, constituent, enzyme activator, etc.)

Nutrient Classification


Macronutrients

- From air and water: C, H and O
- From soil:
 - Primary N, P and K
 - Secondary Ca, Mg and S
- **Micronutrients** (soil):
 - Fe, B, Mn, Cu, Zn, Mo, Cl, Ni, Co

Chemistry Fuels Growing Plants

- <u>http://www.webelements.org/</u>
- <u>http://antoine.frostburg.edu/chem/senese/10</u>
 <u>1/index.shtml</u>
- <u>http://www.americanchemistry.com/s_acc/s</u> ec_article.asp?CID=100&DID=1706
- <u>http://www.ipni.net/</u>
- <u>http://www.agr.state.nc.us/cyber/kidswrld/p</u> <u>lant/index.htm</u>
- <u>http://extension.oregonstate.edu/mg/botany/</u> <u>nutrition.html</u>

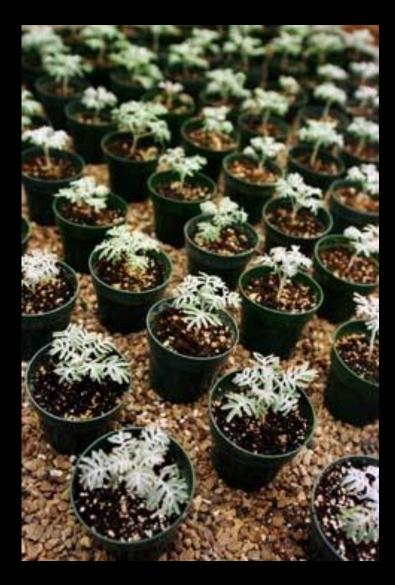
Periodic Table of the Elements

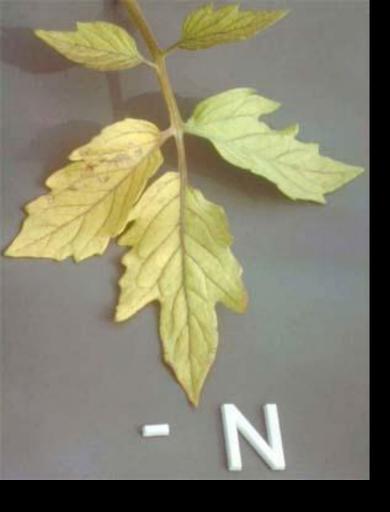
Plant Nutrients

- C. HOPKNS
 - Mo (Missouri) CaFe
- Mg (mighty good)
- Cl (clean)
- Mn B (managed by)
- CuZn Ni
- (cousin Nick)

Nutrient Status Diagnosis

- Visual symptomsPlant tissue analysis
- Soil testing





Deficiency Symptoms

- Vary with plant species
- Color
- Pattern
- Growth response
- Location & History
- New or old plant parts

Cholorosis on lower leaves Light green rest of plant

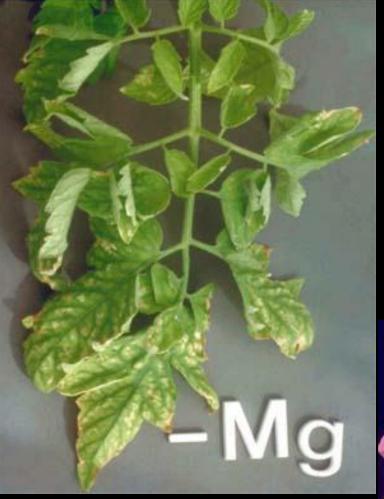
Nitrogen

 Amino acids, proteins, nucleic acids, nucleotides and enzymes

Purpling of lower leaves

Phosphorus

- Sugar phosphates ATP
- Nucleic acids DNA
- Coenzymes, membranes



Chlorosis, necrosis on edge of lower leaves

Potassium

- Enzyme activator
- Osmotic regulator
- Maintains electrical nuetrality

Intervienal chlorosis on lower leaves

Magnesium

- Part of chlorophyll molecule
- Phosphate transfer

- Middle lamella of cell walls
- Involved in energy transfer

Iron

 Cytochromes, photosynthesis, N₂ fixation & respiration

Strong chlorosis at base of leaves

Interveinal chlorosis of the youngest leaves

Plant Nutrient Management

Water

Fertilizer

Fertilizer Programs

- Preplant fertilization
- Postplant fertilization
- Selecting N form
- Secondary Macronutrients
- Fertilizing at finish
- Slow-release programs

Scotts-Sierra Horticultural Products Company • 14111 Scottslawn Road • Marysville, Ohio • 43041

Reading Fertilizer Bags

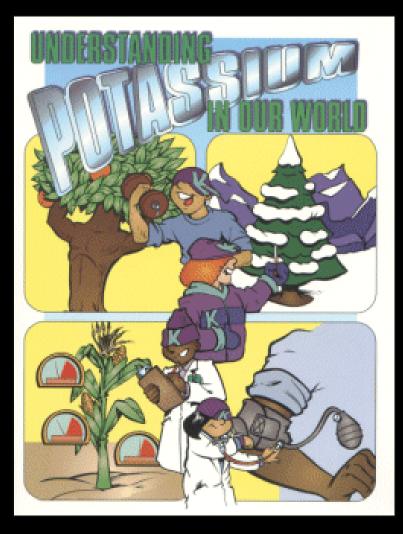
N:P:K

Preplant Fertilization

- Starting off right
- Nutrients must be present and in useable forms
- Adjusting pH prior to planting is key
- Most grower mixes contain balanced watersoluble starter charge, wetting agent and dolomitic lime (Ca, Mg)

Nitrogen


- Incorporate a controlled-release fertilizer at or soon after the time of planting
- Supplement during growing season
 - liquid fertilizer or
 - top-dressing granular or
 - CRN


Phosphorus

- Incorporate into media before planting
- Supplement with liquid, CR or granular
- Incorporate with complete fertilizer

Potassium

- Required at higher concentration than P but lower than N
- Supply before planting through CR or complete granular
- Supplement during growing season with CR, complete granular or liquid fertilizer

Preplant Slow-release Fertilizers

Incorporated in mix or as top dressingAdjust pre- and postplant programs

SR or CR

Postplant Fertilization

- Continuous liquid fertilization for N & K
- Soilless media
 feed P as well
- Categorize plants as very light, light, moderate, heavy or very heavy

Concentration Requirements*

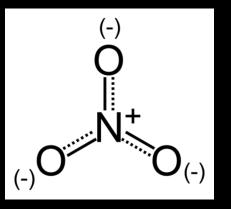
Crop	Conc. Category	Weekly oz/100 gal	Constant oz/100 gal
Bedding Plants	Very light	16	6
Gloxinia	Light	20	10
Geranium	Moderate	32	13.5
Poinsettia	Very Heavy	48	17

*Fertilizer containing 20 percent Nitrogen (20-10-20)

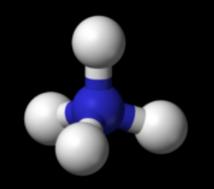
Best ratio for GENERAL crops is

2 Nitrogen (N)

Phosphorus (P.O.)


-2 Potassium (K₂O) -20-10-20 industry standard

Postplant Fertilization


ONCE PER WEEK -N = 240 to 720 ppmEVERY WATERING -N = 90 to 255 ppm

Nitrate (NO_3^-)

N Form

Acid lovers: azalea, rhodos

Ammonium (NH₄)

 $\mathbf{1}_2$

Response generally identical urea must be converted to ammoniacal N for assimilation

Urea

 H_2

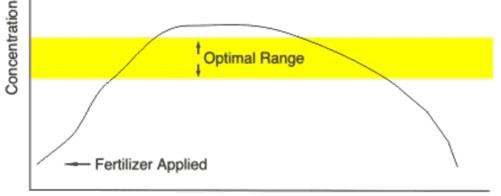
Ammonium Toxicity

- Some plants are injured when >50% of total N is ammonium plus urea
- Aim for 40% or less ammonium plus urea
- "All nitrate plants" become "hard" overall smaller size
- Greater risk in winter due to bacterial slow-down

Nitrogen Form and Plant Growth

 Rosarians use urea and ammonium fertilizers for lush growth

• Nitrate sources for hardening plants


Fertilizing at Finish

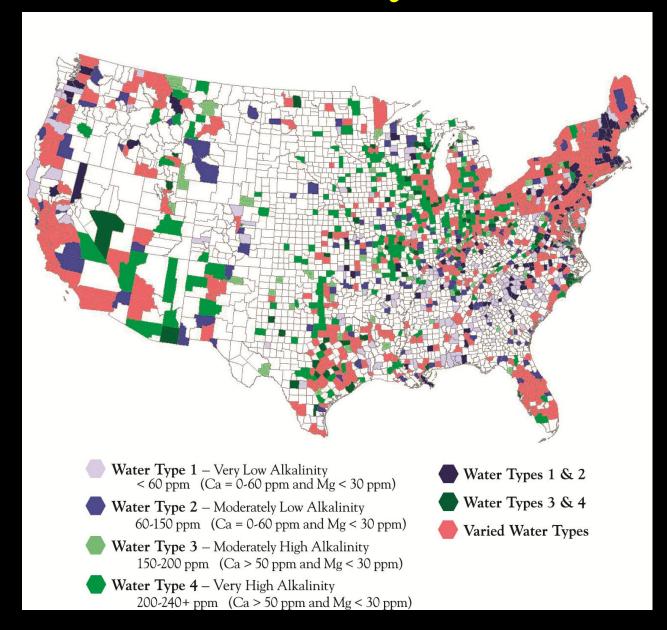
- Plants will last longer in retail if nutrients are reduced two weeks before market date
- Check media nutrient levels
- Constant feeding > weekly feeding

Slow Release Fertilization Programs

- Started in 1960s
- Lack of control
- Growth may need to be slowed (cool & cloudy)
- Mixed into media at preplant
- Topdressing
- Reduces labor
- Saves time

Sources

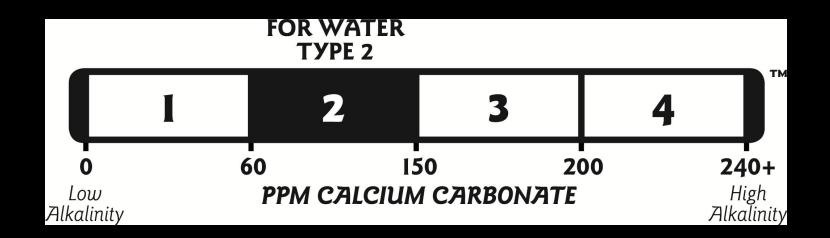
<u>http://www.tfi.org/</u>

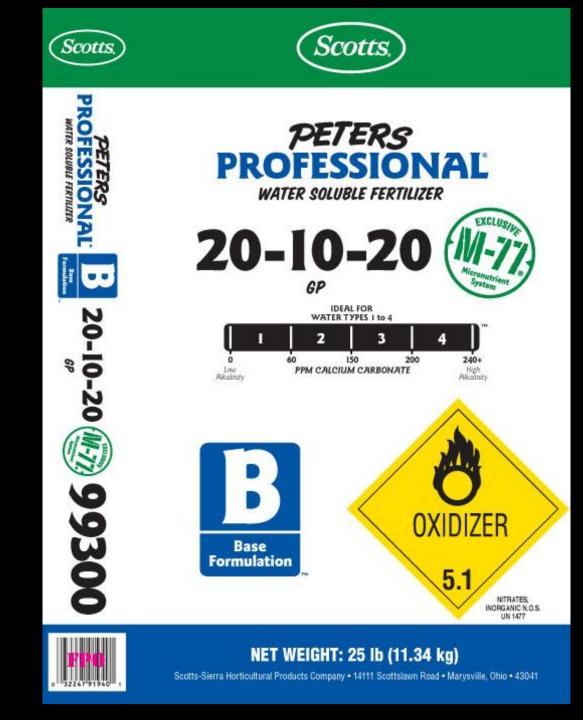

The Fertilizer Institute Nourish, Replenish, Grow

- <u>http://www.fertilizer.org/ifa/</u>
- <u>http://4e.plantphys.net/article.php?ch=5&id=289</u>
- <u>http://soil.gsfc.nasa.gov/NutrTeam/pntintro.htm</u>
- http://www.ipni.net/

INTERNATIONAL PLANT NUTRITION INSTITUTE

Water Quality Varies


- Web-based fertilizer decision system
- Proven N-P-K ratios based on decades of research on water quality & fertilizer performance
- Based on quality of water and crop
- *Scotts Exchange Spring 2008
- petersabc.com



Get your water tested!

- Test kit through Hummert International
- Results handout
- Recommendations and "petersabc.com"

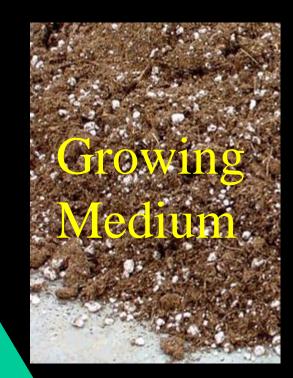
petersabc.com exercise

Peters Recommended Rates

TABLE 1 Recommended Feeding Rates					
Crop Type	Constant Liquid Feeding ppm N	Periodic Feeding ppm N			
Bedding Plants	50 – 150	150 – 250			
Containerized Woody Plants	50 - 100	200 – 350			
Flowering Pot Crops	200 - 300	300 – 450			
Potted Foliage	150 - 200	250 - 300			
Plugs (All Types)	50 – 125	175 – 225			
Landscape/Outdoors	200 - 300	400 - 600			

Amount of Fertilizer & EC

TABLE 2 Weight (In Ounces) of Product Needed To Mix One Gallon of Concentrate						
Target Fertilizer Concentration	Injector Ratios			EC mmhos/cm of Target		
(ppm N) After Dilution	1:15	1:100	1:200	Feed Rate After Dilution		
50	0.5	3.4	6.8	0.31		
100	1.0	6.8	13.5	0.62		
200	2.0	13.5	27	1.24		
300	3.0	20.3	40.5	1.86		


Handouts

- Jack's chart
- Everiss chart
- Qwaterly
- Fertilizer
- Example water reports

Plant Nutrient Management

Water

Fertilizer